Faszination Universum – Objekt unbekannter Natur entdeckt
Von: mm/f24.ch
Ein internationales Team von Astronom:innen unter der Leitung von Forschenden des Max-Planck-Instituts für Radioastronomie hat mit dem MeerKAT-Radioteleskop ein faszinierendes Objekt unbekannter Natur im Kugelsternhaufen NGC 1851 entdeckt. Es ist schwerer als die schwersten bekannten Neutronensterne und gleichzeitig leichter als die leichtesten bekannten Schwarzen Löcher und befindet sich in einer Umlaufbahn um einen sich schnell drehenden Millisekunden-Pulsar. Dies könnte die erstmalige Entdeckung eines Doppelsternsystems aus Radiopulsar und Schwarzem Loch sein, und damit eines Paars, das neue Tests der allgemeinen Relativitätstheorie von Einstein ermöglichen würde. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift Science veröffentlicht.
Eine künstlerische Darstellung des Pulsar-Doppelsternsystems unter der Annahme, dass der massereiche Begleitstern ein Schwarzes Loch ist. Der helle Hintergrundstern im Bild stellt den Radiopulsar PSR J0514-4002E in 8 Millionen km Entfernung dar. (Foto: Daniëlle Futselaar (artsource.nl))
Neutronensterne, die ultradichten Überreste einer Supernova-Explosion, können nur eine bestimmte Maximalmasse erreichen. Sobald sie zu viel Masse angehäuft haben, zum Beispiel durch das Verschlucken eines anderen Sterns oder durch die Kollision mit einem anderen Neutronenstern, stürzen sie in sich zusammen. Was bei einem solchen Kollaps aus ihnen wird, ist Anlass für zahlreiche Spekulationen.
Die vorherrschende Meinung ist jedoch, dass Neutronensterne zu Schwarzen Löchern kollabieren, also zu Objekten, die ein so starkes Gravitationsfeld haben, dass nicht einmal Licht ihnen entkommen kann. Die Theorie, die durch Beobachtungen gestützt wird, besagt, dass die leichtesten Schwarzen Löcher, die durch kollabierende Sterne entstehen können, etwa fünfmal mehr Masse haben als die Sonne.
Dies ist erheblich mehr als die 2,2-fache Sonnenmasse, die für den Kollaps eines Neutronensterns erforderlich ist, was zu der so genannten Massenlücke bei Schwarzen Löchern führt. Die Art der kompakten Objekte in dieser Massenlücke ist bisher unbekannt. Eine detaillierte Untersuchung hat sich als schwierig erwiesen, da solche Objekte bisher nur durch Gravitationswellenereignisse im fernen Universum entdeckt werden konnten.
Entdeckung in der Masselücke
Die Entdeckung eines Objekts in dieser Masselücke in unserer Milchstrasse durch ein Team von Astronom:innen der internationalen Kollaboration „Transients and Pulsars with MeerKAT“ (TRAPUM). Transienten und Pulsare mit dem Radioteleskop MeerKAT) könnte helfen, diese Objekte besser zu verstehen.
Ihre Arbeit, die in der Fachzeitschrift Science veröffentlicht wurde, berichtet über ein massereiches Paar kompakter Sterne im Kugelsternhaufen NGC 1851 im südlichen Sternbild Columba (Taube). Durch den Einsatz des empfindlichen MeerKAT-Radioteleskops in Südafrika in Verbindung mit leistungsstarken Geräten, die am Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn gebaut wurden, konnten sie schwache Pulse von einem der Sterne aufspüren und ihn als Radiopulsar identifizieren. Das ist eine Art Neutronenstern, der sich sehr schnell dreht und wie ein kosmischer Leuchtturm Radiosignale ins Universum sendet.
Der neu entdeckte Pulsar mit der Bezeichnung PSR J0514-4002E dreht sich mehr als 170 Mal pro Sekunde um die eigene Achse, wobei jede Umdrehung einen rhythmischen Puls erzeugt, der dem Ticken einer Uhr gleicht. Das Ticken dieser Pulse erfolgt extrem regelmässig. Durch die Messung kleiner Abweichungen, das sogenannte Pulsar-Timing, waren die Forschenden in der Lage, die Orbitalbewegung des Pulsars äusserst präzise zu bestimmen.
„Stellen Sie sich vor, Sie könnten eine fast perfekte Stoppuhr in die Umlaufbahn eines fast 40’000 Lichtjahre entfernten Sterns bringen und dann die Zeit der Umläufe mit Mikrosekundengenauigkeit messen“, sagt Ewan Barr, der die Studie zusammen mit seiner Kollegin Arunima Dutta, Doktorandin am MPIfR, geleitet hat.
Ein unsichtbarer Partner
„Durch dieses regelmässige Timing des Pulsars und die sorgfältige Analyse unserer Beobachtungen konnten wir die Position des Pulsars genau bestimmen. Aber als wir uns Hubble-Bilder von NGC 1851 anschauten, sahen wir an dieser Position nichts“, erklärt Prajwal Voraganti Padmanabh, Postdoktorand am Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) in Hannover. „Daher ist das Objekt, das mit dem Pulsar den gemeinsamen Schwerpunkt umrundet, kein normaler Stern, sondern ein extrem dichter Überrest eines kollabierten Sterns.“
Darüber hinaus zeigte die beobachtete zeitliche Veränderung des Punktes der grössten Annäherung zwischen den beiden Sternen, dass der Begleiter eine Masse hat, die gleichzeitig grösser als die jedes bekannten Neutronensterns und kleiner als die jedes bekannten Schwarzen Lochs ist. Damit fällt er genau in die Massenlücke Schwarzer Löcher.
„Was auch immer dieses Objekt ist, es ist eine aufregende Nachricht“, sagt Paulo Freire vom MPIfR. „Wenn es sich um ein Schwarzes Loch handelt, ist es das erste bekannte Pulsar-Schwarzes-Loch-System, dessen Entdeckung seit Jahrzehnten den Heilige Gral der Pulsarastronomie darstellt! Wenn es sich um einen Neutronenstern handelt, wird dies grundlegende Auswirkungen auf unser Verständnis des unbekannten Zustands der Materie bei diesen unglaublichen Dichten haben!“
Der exotischste bisher entdeckte binäre Pulsar
Die Wissenschaftler:innen gehen davon aus, dass die Entstehung des massereichen Objekts und seine anschliessende Verbindung mit dem sich schnell drehenden Radiopulsar auf einer engen Umlaufbahn das Ergebnis eines eher exotischen Vorgangs ist, die nur aufgrund der besonderen lokalen Umgebung möglich war.
Das System befindet sich im Kugelsternhaufen NGC 1851, einer dichten Ansammlung alter Sterne, die viel dichter gepackt sind als die Sterne im übrigen Teil der Galaxis. Durch den geringen Abstand können die Sterne gegenseitig ihre Bahnen stören und im Extremfall sogar miteinander kollidieren.
Aus einer solchen Kollision dürfte das jetzt entdeckte Objekt entstanden sein. Bevor jedoch der jetzige Doppelstern entstand, muss der Radiopulsar zunächst Material von einem Spenderstern in einem sogenannten massearmen Röntgendoppelsternsystem erhalten haben.
Ein solcher „Recycling“-Prozess ist notwendig, um den Pulsar auf seine aktuelle Rotationsrate zu beschleunigen. Das Team glaubt, dass dieser Spenderstern dann in einem so genannten Austauschvorgang durch das heutige massereiche Objekt ersetzt wurde. „Dies ist der exotischste binäre Pulsar, der bisher entdeckt wurde“, sagt Thomas Tauris von der Universität Aalborg, Dänemark. „Seine lange und komplexe Entstehungsgeschichte stösst an die Grenzen unserer Vorstellungskraft.“
Die Wissenschaftler können noch nicht abschliessend sagen, ob sie den massereichsten bekannten Neutronenstern, das leichteste bekannte Schwarze Loch oder gar eine neue exotische Sternvariante entdeckt haben. Sicher ist jedoch, dass sie ein einzigartiges Labor zur Erforschung der Eigenschaften von Materie unter den extremsten Bedingungen im Universum gefunden haben.
„Wir sind mit diesem System noch nicht fertig“, sagt Arunima Dutta. Sie führt weiterhin aus: „Die Aufdeckung der wahren Natur des Begleiters wird einen Wendepunkt in unserem Verständnis von Neutronensternen, Schwarzen Löchern und allem, was sonst noch in der Massenlücke des Schwarzen Lochs lauern könnte, darstellen.“
«fricktal24.ch – die Online-Zeitung fürs Fricktal
zur Festigung und Bereicherung des Wissens»